Solution to Assignment 4

15.5

(24). The region is over a rectangle which can be decomposed into two trianlges D_{1} and $D_{2} . D_{1}$ has vertices at $(0,0),(1,0),(1,2)$ and D_{2} has vertices at $(0,0),(1,2),(0,2)$. Over D_{1}, the region is described by $0 \leq z \leq 1-x$. Over D_{2}, it is given by $0 \leq z \leq(2-y) / 2$. Hence the volume of the region is

$$
\iint_{D_{1}} \int_{0}^{1-x} 1 d z d A(x, y)+\iint_{D_{2}} \int_{0}^{(2-y) / 2} 1 d z d A(x, y)=\cdots .
$$

(27). The equation of the plane passing through $(1,0,0),(0,2,0),(0,0,3)$ is given by $6 x+3 y+2 z=$ 6 (after using the cross product method). Regarding it as a region over the triangle T in the $x y$-plane with vertices at $(0,0),(1,0),(0,2)$, the volume of the tetrahedron is

$$
\iint_{T} \int_{0}^{(6-6 x-3 y) / 2} d z d A(x, y)=\cdots
$$

(29) The region is described by $0 \leq z \leq \sqrt{1-x^{2}}$ where (x, y) satisfies $x^{2}+y^{2} \leq 1, x, y \geq 0$. Therefore, the volume of this region is

$$
8 \times \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} 1 d z d y d x=\cdots=16 / 3
$$

Supplementary Problems

1. Find the equations of the planes passing through the origin and (a) $(1,2,3),(0,-2,0)$ and (b) $(0,2,-1),(3,0,5)$.

Solution. (a) $(1,2,3) \times(0,-2,0)=(6,0,-2)$. The equation is $6 x-2 z=0$ or $3 x-z=0$.
(b) $(0,2,-1) \times(3,0,5)=(10,-3,-6)$. The equation is $10 x-3 y-6 z=0$.
2. Find the equation of the plane passing the points $(1,0,-1),(4,0,0),(6,2,1)$.

Soluton. Take $\mathbf{u}_{0}=(4,0,0)$. Then $\mathbf{v}_{1}=(1,0,-1)-(4,0,0)=(-3,0,-1)$, and $\mathbf{v}_{2}=(6,2,1)-(4,0,0)=(2,2,1) . \mathbf{v}_{1} \times \mathbf{v}_{2}=(2,1,-6)$. The equation is $2 x+y-6 z=d$. Since $(4,0,0)$ belongs to the plane, $d=2 \times 4+0-6 \times 0=8$. Finally, the equation of this plane is $2 x+y-6 z=8$.
3. Let C be the cone whose top is $(0,0, h)$ and base is a triangle T in the $x y$-plane. Show that its volume is given by $\frac{1}{3}|T| h$ where $|T|$ is the area of T.
Solution. Use the volume formula involving the cross sections. At z, the cross section of the paraboloid is given by $(x, y), x^{2}+y^{2} \leq z$. This is a disk of radius \sqrt{z} whose area is πz. So the volume of the paraboloid is

$$
\int_{0}^{h} \pi z d z=\frac{\pi h^{2}}{2} .
$$

